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Abstract
Since themid-1800s pinyon-juniper (PJ)woodlands have been encroaching into sagebrush-steppe
shrublands and grasslands such that they now comprise 40%of the total forest andwoodland area of
the IntermountainWest of theUnited States.More recently, PJ ecosystems in select areas have
experienced dramatic reductions in area and biomass due to extreme drought, wildfire, and
management. Due to the vast area of PJ ecosystems, tracking these changes inwoodland tree cover is
essential for understanding their consequences for carbon accounting efforts, as well as ecosystem
structure and functioning. Herewe present a carbonmonitoring, reporting, and verification (MRV)
system for characterizing total aboveground biomass stocks andflux of PJ ecosystems across theGreat
Basin. This is achieved through a two-stage remote sensing approach byfirst using spatial wavelet
analysis to rapidly sample tree cover from very high-resolution imagery (1m), and then training a
RandomForestmodel whichmaps tree cover across the region from2000 to 2016 using temporally-
segmented Landsat spectral indices obtained from the LandTrendr algorithm inGoogle Earth Engine.
Estimates of coverwere validated against field data from the SageSTEP project (R2=0.67,
RMSE=10%cover). Biomass estimated from cover-based allometry was higher than estimates from
the Forest Inventory andAnalysis Program (FIA) at the plot-level (bias=5Mgha−1 and
RMSE=15.5Mg ha−1) due in part to differences in tree-level biomass allometrics. County-level
aggregation of biomass closelymatched estimates from the FIA (R2=0.97) after correcting for bias at
the plot level. Even aftermany previous decades of encroachment, we find forest area (i.e. areas with
�10%cover) increasing at a steady rate of 0.46%per year, but 80%of the 9.86 Tg increase in biomass
is attributable to infilling of existing forest. This suggests that the known consequences of
encroachment such as reducedwater availability, impacts to biodiversity, and risk of severe wildfire
may have been increasing across the region in recent years despite the actions of sagebrush steppe
restoration initiatives.

1. Introduction

Dryland biomes cover 41.5% of the terrestrial earth
surface and support 1079 million hectares of forest
land (Bastin et al 2017). Rapid encroachment of woody
plants into grasslands and savannas across the world

(Stevens et al 2017) suggests that dryland regions are
capable of supporting even greater amounts of woody
biomass. Tracking the changes in woody cover and
biomass of these systems is essential for understanding
their role in the global carbon cycle and the numerous
impacts of woody encroachment including changes to
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biodiversity (Miller et al 2000, Ratajczak et al 2012),
ecohydrology (Huxman et al 2005, Roundy et al 2014,
Kormos et al 2017), and ecosystem services (Anadón
et al 2014, Kim et al 2016).

In particular, pinyon-juniper (PJ) and western
juniper forests and woodlands of the western US
(hereafter referred to as PJ woodlands) have received
much attention due to their extensive encroachment
since the mid-1800s which has displaced sagebrush
steppe shrublands and grasslands and associated wild-
life (Miller et al 2000, Romme et al 2009, Baruch-
Mordo et al 2013). PJ ecosystems now cover over
40 million hectares (Romme et al 2009), making them
the third largest vegetation type in the United States
(Huang et al 2009). Although the density of carbon
stored in these ecosystems is relatively low compared
to other forest types, the vast area of short stature for-
ests and woodlands (both nationally and globally)
make them critical components of regional, national,
and global carbon budgets. Furthermore, the carbon
balance of these systems is extremely dynamic as evi-
denced by historic patterns of woody encroachment as
well as recent large-scale mortality events in PJ ecosys-
tems across the Intermountain West and south-
western US (Scholes and Archer 1997, Breshears et al
2005, Strand et al 2008, Clifford et al 2011). In addition
to natural mortality, PJ ecosystems are actively mana-
ged to restore historic grassland and shrubland ecosys-
tems, mainly for enhancing forage for livestock
grazing and improving wildlife habitat quality for
certain species such as the greater sage-grouse (Cen-
trocercus urophasianus) (Miller and Rose 1999, Miller
et al 2008, Romme et al 2009). Indeed, these natural
and human induced changes have significant impacts
on total carbon stocks and fluxes in PJ ecosystems,
ultimately impacting carbon budgets at the national
scale.

Despite their importance, carbon stocks and
dynamics in PJ ecosystems are poorly quantified, and
thus not well understood. This is partly due to the rela-
tive paucity of systematically collected field observa-
tions. Although the USDA Forest Service Forest
Inventory and Analysis (FIA) program has plots in PJ
woodlands, many areas do not meet the definition of
forestland and thus are not included in the inventory
or subsequent carbon reports such as the Environ-
mental Protection Agency’s annual emissions report
(EPA 2019). Remote sensing can augment field obser-
vations to better quantify carbon stocks and fluxes in
these ecosystems. However, most previous research
using remote sensing to map PJ cover or biomass has
either been limited to landscape scales or only one or
two points in time (Smith et al 2008, Strand et al 2008,
Falkowski et al 2017). Recently, remote sensing aided
mapping of all carbon pools in the Great Basin of the
western United States, including PJ, found nearly
twice the total carbon of previous estimates which
were limited to forest areas (Fusco et al 2019). These
methods formapping PJ need to be scaled to a regional

extent and an annual frequency to understand how PJ
biomass has changed in the past and to enable regular
monitoring into the future.

Numerous types of remotely sensed datasets, auto-
mated classification approaches, and spatial pattern
recognition methods have been used to map structure
and characterize encroachment in different woodlands
across a range of spatial scales (Hudak and Wessman
1998, Asner et al 2003, Laliberte et al 2004). Many of
these approaches have also been applied in PJ ecosystems
specifically. While using object-based classification of
very high resolution (VHR) imagery (�1m) can effec-
tively map individual tree crowns in PJ ecosystems
(Strand et al 2006, Poznanovic et al 2014), thesemethods
are challenging to apply across broad regions andmulti-
ple time periods because of inconsistencies in the radio-
metric quality of VHR images. Falkowski et al (2017)
mapped conifer canopy cover across>400 000 km2 of PJ
woodlands in the Intermountain West by applying spa-
tial wavelet analysis to aerial imagery (available via
https://map.sagegrouseinitiative.com), but even this
approach requires the time-consuming process of man-
ual parameter calibration to image radiometry. Limited
availability of VHR imagery also precludes it from use in
regular monitoring for many parts of the world or
exploring historical trends. However, VHR imagery
serves as an excellent source of information for calibra-
tion and validation of models based on moderate or
lower resolution imagery (10–30m) which is more
widely available. Pixel-based approaches using Landsat
imagery have also been successful at mapping PJ cover
across broad extents or atmultiple points in time (Huang
et al2009) albeitwith lower accuracy (i.e.R2) thanobject-
based approaches with VHR imagery. These approaches
can now easily be applied across greater spatiotemporal
extents because of the availability of Landsat Surface
Reflectance Products in cloud computing platforms like
Google Earth Engine (Gorelick et al 2017) which enable
the use of trend-fitting algorithms to improve inter-
annual consistency (Kennedy et al2018).

The primary goal of this research is to develop a
carbonmonitoring, reporting, and verification (MRV)
system for PJ ecosystems across the Great Basin. This
is achieved through a two-stage remote sensing
approach using spatial wavelet analysis to identify tree
crowns in aerial imagery at sample locations which
then serve as training information for a Landsat-based
model of tree cover. Applying the LandTrendr algo-
rithm (Kennedy et al 2010) to Landsat time series in
Google Earth Engine then allows us to consistently
map cover through time. Biomass is then mapped
using cover-based allometry, which we develop from
field data and crown-based allometrics of tree bio-
mass. We compare maps of cover to field estimates
from the SageSTEP project and compare biomass
maps to plot- and county-level estimates from the FIA.
Through these maps we illustrate trends in PJ cover
and biomass from 2000 to 2016 and compare rates of
change between different regions.
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2.Methods

2.1. Study area and time period
Our study examines changes in aboveground PJ biomass
covering the Great Basin, a large endorheic basin
(736 500 km2 study area), and extending into western
juniper dominated areas of the Pacific Northwest
(figure 1). PJ ecosystems also extend into the Colorado
Plateau, but this regionwasmostly excluded because of a
lack of available training data, and because some of the
dominant species in this region (e.g.Pinus edulisEngelm.
and Juniperus monosperma Sarg.) may not be as accu-
rately represented by the allometric relationships used in
this study. The PJ ecosystems in the Columbia Plateau
are typically dominated by western juniper (Juniperus
occidentalis Hook.), whereas the Great Basin is domi-
nated by Utah juniper (Juniperus osteosperma (Torr.)
Little) and single-leaf pinyon pine (Pinus monophylla
Torr. & Frém.). PJ ecosystems are typically present on a
middle elevation range between sagebrush ecosystems
which exist at lower elevations and ecosystems domi-
nated by ponderosa pine (Pinus ponderosaDouglas ex C.
Lawson), limber pine (Pinus flexilis E. James), or curl-leaf
mountain mahogany (Cercocarpus ledifolius Nutt.) at
higher elevations. The climate for the study area is
predominately cold and semi-aridwith hot dry summers
and cold wet winters but can vary dramatically along the
wide latitudinal range (40.5°N–44°N) and elevation

range (−85 to 4400m NAVD88). Annual average
temperatures range from−3.1 °C to 24.6 °Cand average
precipitation ranges from 46 to 2174mm (Daly et al
2008). Winters (December–February) have minimum
temperatures ranging from −16.1 °C to 8.4 °C, max-
imum temperatures ranging from −4.9 °C to 22.3 °C,
and average precipitation between 16 and 1176mm
including rain and melted snow (Daly et al 2008).
Summers (June–August) have minimum temperatures
from−5.7 °C to 29.2 °C, maximum temperatures from
9.0 °C to 46.6 °C, and an average precipitation of
5–201mm (Daly et al2008).

We limited our temporal extent to 2000–2016 to
match the availability of consistently measured FIA
data which we use as a basis of comparison. In 1999
FIA began transitioning from periodic independent
collections in each state to collecting a portion of plots
annually with a consistent sampling design.

2.2. Remotely sensed data
Falkowski et al (2017) produced a high-resolution
map of canopy cover across the greater sage-grouse
range by applying spatial wavelet analysis to National
Agriculture Image Program (NAIP) imagery collected
between 2011 and 2013. Spatial wavelet analysis, also
known as Laplacian of Gaussian blob detection,
identifies the location and size of bright circular
objects against a dark background by convolving a

Figure 1. Study area (736 500 km2) andmask ofwoodlands used for cover and biomassmapping derived fromLandfire Existing
Vegetation Type (LF2.0.0), and clusters of SageSTEP plots used for validation of canopy cover estimates.
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single band image with a Mexican hat wavelet of
several radii to produce a scale-space transform of the
image which is searched for local maxima. Canopy
cover, defined as the percent vertical projection of tree
crown area (Jennings et al 1999), was calculated from
tree crowns identified by this algorithm by gridding
percent tree crown area at scale of 30 m. This canopy
cover map overlaps most of our study area and served
as a basis for model training and validation in our
efforts to map PJ canopy cover from 2000 to 2016.
Along with the Landsat imagery, topographic indices
generated from the National Elevation Dataset (10 m)
and variables derived from contemporary climate
surfaces (Rehfeldt 2006) were incorporated into mod-
els of canopy cover.

2.3. Sampling
The canopy cover map produced by Falkowski et al
(2017) was stratified into 5% cover intervals (0%,
1%–4%, 5%–9%, 10%–14%, etc) and randomly
sampled in a GIS at a rate of 1 sample per 1000 km2 per
class, which produced 5458 samples. This stratified
random sample of cover enabled high cover values,
which were rare on the landscape, to be represented in
the model training data. The delineated tree crowns for
each 30m × 30m sample of canopy cover were
compared against the aerial imagery used to produce it,
and only samples which appeared to accurately repre-
sent the canopy were retained for model training
(n=2535). This method is a rapid semi-automated
approach which enables more samples to be gathered
than could be obtained from using a dot-grid or field
measurements but ensures cover estimates are more
accurate for model training than if the automated tree
extractionwere fully relied upon. Training samplesmay
have been biased towards tree configurations that were
more easily captured by spatial wavelet analysis, but the
accuracy of modeled canopy cover derived from this
approachwas evaluatedwith independentfield data.

2.4. Image and topographic data preparation
Landsat Tier 1 Surface Reflectance imagery was cloud
masked before producing temporal composites of spec-
tral indices whichwere used as input for the LandTrendr
Algorithm in Google Earth Engine (Kennedy et al 2018).
Initial tests revealed a date range of 22 September–22
December best captured coniferous tree canopy cover
while minimizing the influence of background vegeta-
tionwhich is predominantly senesced in autumn. Images
in this date range were collected from 1998 to 2017 to
provide a temporal buffer for LandTrendr segmentation,
which can often fail to identify significant changes in the
first or last year of a time series. The influence of clouds,
cloud shadows, and snow was minimized by discarding
images with greater than 50% cloud cover and masking
the remainingoccludedpixelswith the includedCFMask
band (Foga et al 2017). Landsat-8 images were

harmonized toLandsat-7 to improve continuity between
the sensors (Roy et al 2016). The Normalized Difference
Vegetation Index (NDVI; Rouse et al 1974), Normalized
Burn Ratio (NBR; Key and Benson 2006), and Normal-
ized Difference Moisture or Water Index (NDMI;
Gao 1996), and Enhanced Vegetation Index (EVI; Liu
and Huete 1995) were produced for each image (table
S1, available online at stacks.iop.org/ERL/15/025004/
mmedia). The annual median pixel value for each
spectral index and band (table S1) was obtained to
produce annual composites. These annual composites
were temporally segmented with the LandTrendr algo-
rithm (Kennedy et al 2010) using a maximum of 6
segments, a spike threshold of 0.9, a p-value threshold of
0.05, recovery threshold of 0.35, and a best model
proportion value of 0.75. These parameters were
selected from initial tests which involved visualizing the
segmentation of pixel time series for areas with a variety
of cover values and disturbance histories. The resulting
fitted annual values of spectral indices and bands from
the temporal segmentation, along with topographic and
climate data,were used inmodeling of canopy cover.

The topographic indices were produced from the
National Elevation Dataset and included elevation,
percent slope, the cosine and sine of aspect, the inter-
action of slope with the cosine and sine of aspect
(Stage 1976), the solar-radiation aspect index (Roberts
and Cooper 1989), the topographic position index cal-
culated at scales of 90 and 990 m (Weiss 2001), the
continuous heat-insolation load index (Theobald et al
2015), and the topographic diversity index (Theobald
et al 2015). Biologically relevant climate variables
as calculated by Rehfeldt (2006) were derived from
30-year climate normals (1981–2010) downscaled to
30 m. The initial climate surfaces were produced by
fitting thin-plated spline models to weather station
monthly averages of temperature and precipitation
and interpolating these models to a 30 m grid with the
shuttle radar topographic mission digital elevation
model. Derived climate variables included 30-year
normals of growing season precipitation, frost-free
period in days (ffp), and others listed and described in
table S1.

2.5. Canopy covermapping
Canopy cover was mapped annually at a 30 m resolu-
tion for all PJ woodlands in the study area from 2000
to 2016. LandTrendrfitted bands, topographic indices,
and climate variables served as predictors of the
canopy cover samples derived from the Falkowski et al
(2017) map in a Random Forest model (Breiman
2001). The model of 2535 samples used 250 decision
trees, and the square root of the total number of
variables (n=40; table S1) was considered when
splitting at each node. In addition to external valida-
tion with field data, we evaluated model fit from out-
of-bag predictions which produce unbiased estimates

4

Environ. Res. Lett. 15 (2020) 025004

http://stacks.iop.org/ERL/15/025004/mmedia
http://stacks.iop.org/ERL/15/025004/mmedia


of error (Breiman 2001). Cover maps were masked to
the extent of PJ woodlands in the study area to prevent
overestimation of PJ cover in other ecosystems. The
extent of PJ woodlands was mapped by reclassifying
the 2016 Landfire Existing Vegetation Type dataset
(LANDFIRE 2016) with the following vegetation type
classes included in the PJ mask (class codes in
parentheses): Great Basin PJ Woodland (7019),
Columbia Plateau Western Juniper Woodland and
Savanna (7017), Colorado Plateau PJ Woodland
(7016), Colorado Plateau PJ Shrubland (7102), Rocky
Mountain Foothill Limber Pine-Juniper Woodland
(7049), Inter-Mountain Basins Juniper Savanna
(7115). The resulting aggregated class had a user’s
accuracy of 64% and producer’s accuracy of 73% as
determined from the contingency tables produced
for the Southwest and Northwest regions (https://
landfire.gov/remapevt_assessment.php, accessed 6
September, 2019). We also compared this mask to
independent FIA plots measured in 2016 which had at
least one condition labeled as a PJ forest type; this
comparison yielded a user’s accuracy of 71% and
producer’s accuracy of 62%. Since the PJ extent as
determined by LANDFIRE is derived primarily from
2016 imagery, it may exclude PJ which existed within
our timeframe of interest (2000–2016) but was com-
pletely removed by disturbance prior to 2016.

2.6. Biomassmapping
From the maps of canopy cover we produced
annual maps of biomass for the same time period
(2000–2016). Due to the short stature of PJ woodlands,
biomass can be mapped directly from canopy cover
without the saturation problems that occur in most
forests at high levels of cover. We used tree crown-
based allometrics (section S1) for Utah juniper,
single-leaf pinyon, and western juniper (Sabin 2008,
Tausch 2009, Campbell et al 2012) to obtain plot-level
biomass in Underdown Canyon, Nevada (Rau et al
2012) and the Owyhee Plateau, Idaho (Strand et al
2008). Plot-level biomass was regressed against per-
cent canopy cover (equation (1)) which shows above-
ground biomass (AGB in Mg ha−1) has nearly a one-
to-one relationship with percent canopy cover (c) for
both western juniper and Great Basin PJ ecosystems
(R2=0.98, RMSE=3.68Mg ha−1, n=67).

( )= -AGB c1.0668 1.4989. 1

Details of this allometric relationship and its compar-
ison to FIA allometrics may be found in section S1.
Applying this allometry to maps of cover rather than
modeling field biomass directly introduces little error,
enables mapping of both cover and biomass, and
allows the remote sensing model to be constructed
with a much larger representative sample (n=67
versus n=2535).

2.7. FieldValidation
2.7.1. Sagebrush steppe treatment evaluation project
data
We compared predictions of canopy cover to field
measurements gathered as part of the Sagebrush
SteppeTreatment Evaluation Project (SageSTEP;McI-
ver et al 2014). SageSTEP conducted experiments on
several sagebrush restoration treatment methods
across the Great Basin in 2005–2010 centered within
our study period and with 178 control plots (i.e. no
treatment) clustered in 12 sites coinciding with our
study area. Field data collected for each rectangular
30 m× 33 m plot in 2006 and 2007 includedmeasures
of crown diameter for each tree from which we
calculated plot-level percent canopy cover.

2.7.2. Forest Inventory and analysis data
Predicted aboveground biomass was also compared to
biomass estimates from the USFS Forest Inventory
and Analysis program (FIA) at the plot and county
levels. Plots overlapping the study area and timeframe
which contained greater than 50% of their biomass in
the following PJ species were included in the plot-level
comparison: Utah juniper, western juniper, Rocky
Mountain juniper (Juniperus scopulorum Sarg.), one-
seed juniper (Juniperus monosperma (Engelm.) Sarg.),
alligator juniper (Juniperus deppeana Steud.), Califor-
nia juniper (Juniperus californica Carr.), single-leaf
pinyon, two-needle pinyon (Pinus edulis Engelm),
Arizona pinyon (Pinus monophylla var. fallax Little).
For plot-level comparisons, predictionswere extracted
from our annual maps of biomass in the year each plot
was measured by FIA at the true plot coordinates.
Annual correction factors (equation (2)) were calcu-
lated based on this plot-level comparison and applied
to the biomass maps for all subsequent analyses (see
section S2):

( )= - +c y0.004304 9.46, 2

where c is the correction factor and y is year. For
county-level comparisons, FIA estimates of total
county biomass were calculated using the standard
population-level estimation procedures provided
through the EVALIDator tool for the most recent
inventory in each state and using the FIA definition of
PJ forest (USFS 2019). Since FIA does not measure all
‘non-forest’ plots (i.e. plots with less than 10% cover),
we excluded pixels with less than 10% cover when
making county-level comparisons to the maps. We
maintain these definitions of ‘forest’ (i.e.�10%
cover), ‘non-forest’ (i.e.<10% cover), and the more
general ‘PJ woodlands’ (>0% cover) in subsequent
analyses.

2.8. Analysis of cover and carbon trends
Maps of canopy cover and biomass were used to
analyze trends across the entire study area. We
examined the change in total aboveground biomass
and forest area over time. We also investigated how
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much of the change in biomass can be attributed to an
increase in forest area (i.e. increase to �10% cover),
infilling of existing PJ woodlands, and canopy cover
loss. For losses, we tallied the change in biomass which
could be attributed to wildfire as determined from the
Monitoring Trends in Burn Severity dataset (USFS/
USGS 2018). Since our mapping and analysis was
limited to areas classified as PJ in the final year of our
time series, many areas with prior disturbance and a
change in land cover type were likely excluded. To
examine the potential impact of these disturbances on
our estimates of change in biomass, we totaled the area
and biomass change over excluded PJ areas which
experienced a disturbance between 2011–13 and
2015–17 asmapped by Reinhardt et al (in press).

3. Results

The canopy cover model had an out-of-bag R2 of 0.75
and RMSE of 8.77% cover and exhibited a mostly even
distributionof residualswith someoverestimationwhen
observed cover was below 10% and underestimation
when observed cover exceeded 50% (figure 2(a)). Plot-
level validation of canopy cover against SageSTEP had a
similar accuracy and distribution of errors to the out-
of-bag comparison (figure 2(b), R2=0.67, RMSE=
10.17% cover). The short-wave infrared-based spectral
indices (NBR and NDMI) were the top two important
features in the random forestmodel of cover followedby
spectral indices of vegetation greenness (NDVI andEVI)
(figure S4). TheContinuousHeat-InsolationLoad Index
(chili) and summer precipitation (smrp) were the top
ranked topographic and climate variables, respectively,
but still had lower importance than most Landsat-
derived variables. Even though predicted biomass had

an apparent strong linear relationship to FIA plot
biomass (figure 3), FIA biomass was 4.93Mg ha−1 lower
on average, which led to low R2 and high RMSE values.
This bias and apparent lackoffit canbe largely attributed
to differences in tree-level allometry between the crown-
based approachused in this study andFIA’sComponent
Ratio Method as discussed in section S1. County-level
estimates of biomass closely matched those from FIA
following correction for plot-level bias (R2=0.97,
figure 4). Over the whole study area, PJ forest biomass
totaled 171 Tg according to 2016 FIA inventories,
which was 21% of the total forest biomass (USFS 2019).
By comparison, our 2016 map of PJ biomass esti-
mates 161.6 Tg on PJ forest land (i.e. �10% cover)
and 163.0 Tg when including ‘non-forest’ biomass
(i.e. <10% cover). This difference can mostly be
attributed to the Landfire-based mask of PJ forest
area comprising 89% of the area estimated by FIA in
2016, despite the forest areas closely matching on a
county-level (R2=0.97; figure S5).

From 2000 to 2016 PJ biomass increased by
9.86 Tg with a steady increase of 0.39% per year on
average (figure 5). The changes in biomass varied spa-
tially, with 5.1% and 1.2% of the study area increasing
and decreasing, respectively, bymore than 10Mg ha−1

(figure 6). Woodlands dominated by western juniper
in the Columbia Plateau had a higher average rate of
biomass increase (0.98%) compared to PJ in the Great
Basin (0.21%) or Colorado Plateau (0.48%). The over-
all increase in biomass was mostly attributed to infill-
ing of existing ‘forest’ areas (�10% cover) rather than
expansion of PJ into sagebrush or grassland with
<10% tree cover (figure 7), even though forest area
increased by 4610 km2 at an overall rate of 0.46% per
year (figure 8). Over the entire time span of this study,

Figure 2.Comparison of out-of-bag predictions of canopy cover from the random forestmodel against spatial wavelet analysis
estimates of canopy cover used formodel training (a). Comparison of cover predictions with field estimates fromSageSTEP (b).R2,
RMSE, and bias are givenwith respect to the 1:1 line (dashed black).
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33 603 km2 experienced infilling totaling 14.2 Tg in
comparison to the 3.47 Tg that can be attributed to
expansion (i.e. increase in cover to�10%). A total of 8
Tg of biomass was lost in other areas (28 736 km2)with
wildfire responsible for approximately one-tenth of
the decrease (0.81 Tg over 1278 km2) as determined
from the change in biomass within wildfires captured
by the Monitoring Trends in Burn Severity dataset.
The remaining loss was likely due to management,
development, or extreme drought. The PJmask exclu-
ded 1753 km2 of areas classified as disturbed between
2011–13 and 2015–17 by Reinhardt et al (in press),
which would have accounted for an additional loss of
1.42 Tg.

4.Discussion

Even after 150 years of prior encroachment, PJ is
continuing to replace sagebrush and grasslands with
4600 km2 of new ‘forest’ (i.e.�10% tree cover) between
2000 and 2016despite some loss of forest frommanage-
ment and various disturbances. Rates of encroachment
have been reported to decrease in the latter half of the
20th century (Miller et al 2008) with landscape scale
studies showing increases in cover of 0.4%–1.5% per
year since the 1960s (Sankey andGermino 2008). These
rates may have been expected to decline further as areas
suitable for PJ establishment diminish, but we find
encroachment into non-forest areas from 2000 to 2016
continuing at an overall rate of 0.46%per year (figure 8)
and an average increase in percent canopy cover of
3.9%. Losses of biomass from management, wildfire,
and other disturbances comprised extensive reductions
(8 Tg) but were still not enough to offset increases in
other areas (17.8 Tg). However, limiting the extent of
our analysis based on 2016 land cover excluded at least
1.42 Tg of biomass loss that occurred between 2011–13

and 2015–17, and further losses in prior years were
likely excluded as well. It is uncertain if the overall trend
of increasing cover and biomass will continue, as areas
suitable for establishment of PJ may in fact be diminish-
ing. Some existing woodlands may also be reaching a
carrying capacity which limits further infilling due to
resource constraints. Projections also indicate increased
future potential for wildfire and extreme drought
(Breshears et al 2005, Buotte et al 2019), whichmay offset
increases by encroachment and infilling. In addition to
losses by natural causes, there has been increased invest-
ment in PJ removal in recent years for restoring greater
sage-grouse habitat (Natural Resources Conservation
Service 2015). Indeed, theNational Environmental Policy
Act (NEPA) exclusions for PJ removal in the 2018 Farm
Bill will enable further PJ removal and sagebrush restora-
tion in the near future (Conaway 2018). For example, the
proposed Bruneau-Owyhee Sage-grouse Habitat Project
would removewestern juniper from294 000 ha in south-
western Idaho (Bureau of LandManagement 2018). The
large investment in sagebrush restoration presents an
opportunity to not only increase habitat for greater sage-
grouse but to also manage PJ stands for increased

Figure 3.Hexbin (2Dhistogram) ofpredicted biomass
compared toFIAplot biomass (n=4241);R2, RMSE, and bias
are givenwith respect to the 1:1 line (dashedblack). Apparent
bias and lackoffit is largely due todifferences in tree-level
allometrics between the crown-based approachedused for
mapping and FIA’s component ratiomethod (section S1).

Figure 4.Comparison ofmap biomass to FIA county biomass
for themost recent inventory of each state. Accuracy statistics
are givenwith respect to the regression line (solid black) and
1:1 line (dashed black).

Figure 5.Total aboveground biomass over time (solid line,
left axis) and the percent annual change (dashed line, right
axis).
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resilience to the impacts of a changing climate such as
extremedrought and large-scalewildfires.

The trend of increasing PJ biomass (figure 5) could
make PJ woodlands an important component of
national carbon accounting efforts and certainly has
widespread implications for biodiversity and ecosys-
tem services, even though PJ systems represent amod-
est fraction of forest biomass in the western USA
according to FIA (e.g. 21% within our study area). PJ
encroachment may also cause a small increase in
belowground organic carbon (Rau et al 2011) which
we did not account for in this study. Despite the poten-
tial significance of PJ systems for carbon accounting,
much of the PJ biomass is excluded by FIA and thus
also excluded from the EPA’s Greenhouse Gas Inven-
tory reporting, which does not currently estimate
woody biomass on rangelands where there is low
canopy cover (EPA 2019). In the Great Plains trees
outside of forests account for nearly half of the treed
area (Meneguzzo et al 2018), and such non-forest areas
with trees may comprise a large portion of the Great
Basin as well. Unfortunately, commonly used land
cover maps and forest masks often exclude low cover
areas. This may explain the decrease we observed in
non-forest area (i.e. <10% cover) from 8.1% of the
study area in 2000 to just 1.3% in 2016 (figure 7); as the
2016 land cover map may have failed to capture areas
of recent PJ encroachment. Surveying and improve-
ments in remote sensing of trees outside of forests
could provide a more complete picture to carbon
accounting efforts (Johnson et al 2015).

In addition to carbon accounting, tracking of PJ
cover and biomass could enable landscape- to regio-
nal-scale monitoring of potential changes to biodi-
versity and ecosystem services which are known to

accompany PJ cover dynamics. Indeed, the continued
expansion (7% of study area) and infilling (50% of
study area) of PJ forest over the region suggests that
some of the known consequences of encroachment,
such as decreased water availability (Roundy et al
2014, Kormos et al 2017) and herbaceous plant diver-
sity (Miller et al 2000), are likely widespread. The high
degree of infilling of existing PJ woodlands we
observed (figure 7) also poses an increased risk of high
severity fires (Miller et al 2008, Romme et al 2009),
whichmay subsequently increase the risk of cheatgrass
(Bromus tectorum L.) invasion in sites with a low resist-
ance to invasion (Williams et al 2017, Davies et al
2019).

By applying the LandTrendr algorithm to Landsat
imagery in Google Earth Engine, we were able to rapidly
produce stable estimates of PJ biomass over a broad
region for over a decade.However, by scaling estimates of
cover from aerial imagery to Landsat we introduce addi-
tional error (out-of-bag RMSE=8.77% cover) and lose
the potential utility provided by individual tree measure-
ments and high-resolution maps. Our approach is also
based on the assumption that harmonizing sensors and
using the LandTrendr segmentation algorithm enables a
single model to be applied across the entire time series
with consistent accuracy (Vogeler et al 2018). However,
validating and quantifying uncertainty for annual maps
would provide a check of this assumption and enable
propagation of uncertainty to subsequent analyses.
Future efforts could also implement annual mapping of
woodland extent rather than using a single mask, which
could better capture early stages of encroachment and
avoid exclusion of previous woodlands which experi-
enced a change in land cover. These improvements
would create an approach that could potentially be

Figure 6.Map of change in biomass between 2000 and 2016 for the full study area (a)with close-up view of the 2001RobinsonWell
fire (b). Significant increases in biomass (>10Mgha−1) generally occurred on the edges of current PJ while decreases occurred in areas
of disturbance. Lighter shades, such as themajority of the burn area, indicate areas of change captured by themodel but excluded by
the Landfire-based PJmask due to a change in land cover classification.
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applied in many other woodlands for robust MRV of
woody carbon to meet the needs of national carbon
accounting efforts and aid landmanagement.

5. Conclusion

A system for regional scale monitoring of woody cover
and biomass is needed for the world’s dryland biomes
due to their vast area, high degree of change, and the
implications of that change for carbon storage, biodiver-
sity, wildfire risk, and ecosystem services among other
concerns. Here we demonstrated a carbon monitoring
system for PJ woodlands in the western United States,
which is scalable to large regions with annual frequency
through the combination of sampling from VHR
imagery, trend-fitting of Landsat time series to capture
annual cover dynamics, and cover-based allometry to
estimate biomass. Through this approach we found
biomass continuing to increase at an average rate of
0.39% per year from 2000 to 2016, with 80% of the total
increase attributable to infilling of existing woodland
areaswith�10%tree cover—the cover thresholdusedby
FIA in defining forest. While in this paper we only
investigate historical trends in cover and biomass,
regional time series such as these may also be beneficial
for projecting future changes in drylands such as

susceptibility to woody encroachment or vulnerability to
the effects of climate change. This prototype carbon
monitoring system could easily be extended to similar
woodlands around the world to improve monitoring of
carbon storage, understand the impacts of historic
changes in woody structure, and prepare for future
change.
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